Chlorate reductase is cotranscribed with cytochrome c and other downstream genes in the gene cluster for chlorate respiration of Ideonella dechloratans.
نویسندگان
چکیده
The chlorate-respiring bacterium Ideonella dechloratans is a facultative anaerobe that can use both oxygen and chlorate as terminal electron acceptors. The genes for the enzymes chlorate reductase (clrABDC) and chlorite dismutase, necessary for chlorate metabolism and probably acquired by lateral gene transfer, are located in a gene cluster that also includes other genes potentially important for chlorate metabolism. Among those are a gene for cytochrome c (cyc) whose gene product may serve as an electron carrier during chlorate reduction, a cofactor biosynthesis gene (mobB) and a predicted transcriptional regulator (arsR). Only chlorate reductase and chlorite dismutase have been shown to be expressed in vivo. Here, we report the in vivo production of a single polycistronic transcript covering eight open reading frames including clrABDC, cyc, mobB and arsR. Transcription levels of the cyc and clrA genes were compared to each other by the use of qRT-PCR in RNA preparations from cells grown under aerobic or chlorate reducing anaerobic conditions. The two genes showed the same mRNA levels under both growth regimes, indicating that no transcription termination occurs between them. Higher transcription levels were observed at growth without external oxygen supply. Implications for electron pathway integration following lateral gene transfer are discussed.
منابع مشابه
A gene cluster for chlorate metabolism in Ideonella dechloratans.
Chlorate reductase has been isolated from the chlorate-respiring bacterium Ideonella dechloratans, and the genes encoding the enzyme have been sequenced. The enzyme is composed of three different subunits and contains molybdopterin, iron, probably in iron-sulfur clusters, and heme b. The genes (clr) encoding chlorate reductase are arranged as clrABDC, where clrA, clrB, and clrC encode the subun...
متن کاملOxygen-dependent regulation of key components in microbial chlorate respiration
Contamination of perchlorate and chlorate in nature is primarily the result of various industrial processes. The microbial respiration of these oxyanions of chlorine plays a major role in reducing the society’s impact on the environment. The focus with this thesis is to investigate the oxygen-dependent regulation of key components involved in the chlorate respiration in the gram-negative bacter...
متن کاملStructure and Evolution of Chlorate Reduction Composite Transposons
UNLABELLED The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphil...
متن کاملSynthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1
UNLABELLED Despite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile e...
متن کاملNitrate and (per)chlorate reduction pathways in (per)chlorate-reducing bacteria.
The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are two types of dissimilatory nitrate reductases. With respect to their localization, (per)chlorate re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS microbiology letters
دوره 362 6 شماره
صفحات -
تاریخ انتشار 2015